174 research outputs found

    Typing pictures: linguistic processing cascades into finger movements

    Get PDF
    The present study investigated the effect of psycholinguistic variables on measures of response latency and mean interkeystroke interval in a typewritten picture naming task, with the aim to outline the functional organization of the stages of cognitive processing and response execution associated with typewritten word production. Onset latencies were modulated by lexical and semantic variables traditionally linked to lexical retrieval, such as word frequency, age of acquisition, and naming agreement. Orthographic variables, both at the lexical and sublexical level, appear to influence just within-word interkeystroke intervals, suggesting that orthographic information may play a relevant role in controlling actual response execution. Lexical-semantic variables also influenced speed of execution. This points towards cascaded flow of activation between stages of lexical access and response execution

    Effects of animacy on the processing of morphological Number: A cognitive inheritance?

    Get PDF
    Language encodes into morphology part of the information present in the referential world. Some features are marked in the great majority of languages, such as the numerosity of the referents that is encoded in morphological Number. Other features do not surface as frequently in morphological markings, yet they are pervasive in natural languages. This is the case of animacy, that can ground Gender systems as well as constrain the surfacing of Number. The diffusion of numerosity and animacy could mirror their biological salience at the extra-linguistic cognitive level. Human extralinguistic numerical abilities are phylogenetically ancient and are observed in non-human animal species, especially when counting salient animate entities such as social companions. Does the saliency of animacy influence the morphological encoding of Number in language processing? We designed an experiment to test the encoding of morphological Number in language processing in relation to animacy. In Italian, Gender and Number are mandatorily expressed in a fusional morpheme. In some nouns denoting animate referents, Gender encodes the sex of referents and is semantically interpretable. In some other animate nouns and in inanimate nouns, Gender is uninterpretable at the semantic level. We found that it is easier to inflect for Number nouns when the inflectional morpheme is interpretable with respect to a semantic feature related to animacy. We discuss the possibility that the primacy of animacy in counting is mirrored in morphological processing and that morphology is designed to easily express information that is salient from a cognitive point of view

    Flexible control of movement in plants

    Get PDF
    Although plants are essentially sessile in nature, these organisms are very much in tune with their environment and are capable of a variety of movements. This may come as a surprise to many non-botanists, but not to Charles Darwin, who reported that plants do produce movements. Following Darwin\u2019s specific interest on climbing plants, this paper will focus on the attachment mechanisms by the tendrils. We draw attention to an unsolved problem in available literature: whether during the approach phase the tendrils of climbing plants consider the structure of the support they intend to grasp and plan the movement accordingly ahead of time. Here we report the first empirical evidence that this might be the case. The three-dimensional (3D) kinematic analysis of a climbing plant (Pisum sativum L.) demonstrates that the plant not only perceives the support, but it scales the kinematics of tendrils\u2019 aperture according to its thickness. When the same support is represented in two-dimensions (2D), and thus unclimbable, there is no evidence for such scaling. In these circumstances the tendrils\u2019 kinematics resemble those observed for the condition in which no support was offered. We discuss these data in light of the evidence suggesting that plants are equipped with sensory mechanisms able to provide the necessary information to plan and control a movement

    Relación entre el valor del ratio elastográfico y la clasificación citológica de Bethesda en la patología tiroidea

    Get PDF
    ResumenObjetivoPresentar nuestra experiencia en la categorización de la patología tiroidea, a través de la utilización de parámetros ecográficos de malignidad y elastografía con medición del ratio de la deformación tisular, y la correlación de los hallazgos obtenidos con la clasificación citológica de Bethesda.Materiales y métodosSe llevó a cabo un estudio prospectivo y observacional, entre septiembre de 2012 y abril de 2013, que incluyó 137 nódulos tiroideos. Se excluyeron 10 casos Bethesda III-IV. Se realizó ecografía, power Doppler, visualización de micropartículas (Micropure) y elastografía con medición del ratio elastográfico, así como también punción aspirativa con aguja fina guiada por ecografía (con el citólogo presente), utilizando la clasificación Bethesda. Los estudios fueron hechos por el mismo operador con un ecógrafo Toshiba Aplio 400 y los datos estadísticos se evaluaron con el programa IBM SPSS Statistics 20.ResultadosSe estudiaron 127 nódulos en pacientes con una edad promedio de 59±16 años. El 82% de los casos ocurrió en mujeres. Ciento veinte nódulos (94%) fueron clasificados como Bethesda II. La media elastográfica para Bethesda I-II fue de 1,94±2,12 vs. 7,07±5,46 para V-VI (p: 0,048). El punto de corte elastográfico ≤ 2 (87 de 127) presentó una sensibilidad del 85,7% y una especificidad del 81,7% para predecir Bethesda asociada a patología benigna, con un valor predictivo negativo (VPN) del 99% y un valor predictivo positivo del 15%.ConclusionesEl ratio elastográfico permitió descartar la patología tiroidea maligna con valores ≤ 2 y un VPN del 99%, mejorando la selección de los pacientes a punzar. El incremento del ratio elastográfico se asoció a una mayor probabilidad de patología maligna, aunque no se pudo establecer un valor de corte debido al bajo número de casos con Bethesda V-VI.AbstractObjectivesWe present our experience in the categorization of thyroid pathology using the sonographic parameters of malignancy and elastography with measurement elastography strain ratio, to evaluate the relationship between the results found and the Bethesda classification.Materials and methodsProspective observational study, included 137 thyroid nodules studied between September 2012- April 2013. We excluded 10 cases with Bethesda categories III-IV. Ultrasonography, Doppler, Micropure, elastogrphy strain ratio between the lesion and the normal tissue, fine needle aspiration cytology (FNAC),were the diagnosis methods used. The pathologist was always present and the cytological classi fication of Bethesda was used. All study was made by the same physician used Toshiba Aplio 400 ultrasound unit. Results were analyzed with IBM SPSS Statistics 20.ResultsWe studied 127 nodules in patients 59±16 years old, 82% were female; 120 were Bethesda II (94%). The average strain ratio for nodules Bethesda I-II was 1.94±2.12 vs. 7.07±5.46 for those nodules Bethesda V-VI (p:0,048). This means that an elastography strain ratio ≤ 2 (87 of 127 nodules) has a sensibility of 85.7% and a specificity of 81.7% of predicting Bethesda associated with benign pathology with a negative predictive value (NPV) of 99% and a positive predictive value of 15%.ConclusionThe elastography strain ratio allowed to discard malignant nodules with strain ratio ≤ 2 with a NPV of 99% improves the selection of patients for FNAC. The increment in the elastography strain ratio was associated to a higher possibility of malignant thyroid pathology, being unable to determine a limit value due to the low amount of cases with nodules Bethesda V-VI

    A chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps

    Get PDF
    Sunlight absorbed at the Earth’s surface is re-emitted as longwave radiation. Increasing atmospheric concentrations of CO2 and other greenhouse gases trap an increasing fraction of such heat, leading to global climate change. Here we show that when a chlorophyll (Chl)-deficient soybean mutant is grown in the field, the fraction of solar-irradiance which is reflected, rather than absorbed, is consistently higher than in commercial varieties. But, while the effect on radiative forcing during the crop cycle at the scale of the individual experimental plot was found to be large (−4.1± 0.6 W m−2 ), global substitution of the current varieties with this genotype would cause a small increase in global surface albedo, resulting in a global shortwave radiative forcing of −0.003 W m−2 , corresponding to 4.4 Gt CO2eq. At present, this offsetting effect would come at the expense of reductions to yields, probably associated with different dynamic of photosynthetic response in the Chl-deficient mutant. The idea of reducing surface-driven radiative forcing by means of Chl-deficient crops therefore requires that novel high-yielding and high-albedo crops are made available soon.publishedVersio

    Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy

    Get PDF
    Land use changes represent one of the most important components of global environmental change andhave a strong influence on carbon cycling. As a consequence of changes in economy during the last century, areas of marginal agriculture have been abandoned leading to secondary successions. The encroachment of woody plants into grasslands, pastures and croplands is generally thought to increase the carbon stored in these ecosystems even though there are evidences for a decrease in soil carbon stocks after land use change. In this paper, we investigate the effects of woody plant invasion on soil carbon and nitrogen stocks along a precipitation gradient (200–2,500 mm) using original data from paired experiment in Italian Alps and Sicily and data from literature (Guo and Gifford Glob Change Biol 8(4):345–360, 2002). We found a clear negative relationship (-0.05% C mm-1) between changes in soil organic carbon and precipitation explaining 70% of the variation in soil Cstocks after recolonization: dry sites gain carbon (up to? 67%) while wet sites lose carbon (up to -45%). In our data set, there seem to be two threshold values for soil carbon accumulation: the first one is 900 mm of mean annual rainfall, which separates the negative from the positive ratio values; the second one is 750 mm, which divides the positive values in two groups of sites. Most interestingly, this threshold of 750 mm corresponds exactly to a bioclimatic threshold: sites with\750 mm mean annual rainfall is classified as thermo-mediterranean sites, while the ones [750 mm are classified as mesomediterranean sites. This suggests that apart from rainfall also temperature values have an important influence on soil carbon accumulation after abandonment. Moreover, our results confirmed that the correlation between rainfall and trend in soil organic carbon may be related to nitrogen dynamics: carbon losses may occur only if there is a substantial decrease in soil nitrogen stock which occurs in wetter sites probably because of the higher leaching

    Cambiamenti nel regime pluviometrico in ecosistemi mediterranei: il progetto MIND

    Get PDF
    Changes in rainfall patterns in Mediterranean ecosystems: the MIND project. Will Mediterranean terrestrial ecosystems be affected by the expected changes in precipitation regimes? If so, by how much and in which direction? These questions are at the basis of the research performed in context of the EU MIND project, whose key objectives were: i) to investigate the potential effects of increasing drought on Mediterranean terrestrial ecosystems at the process, ecosystem and regional scales and ii) to assess ecosystem vulnerability to changes in rainfall patterns. A network of experimental study sites has been created in Portugal, Spain, France and Italy, where field manipulations alter the amount of water available to the ecosystem. The most up-to-date methods of ecophysiology, micrometeorology, soil ecology and remote sensing have been used to elucidate the mechanisms that regulate the response of vegetation and soil to changes in water availability. This information is providing the basis for the implementation and validation of simulation models capable of predicting the drought response of Mediterranean terrestrial ecosystems, and their vulnerability to future climate change, on a larger scale. The out-coming results are elucidating how water availability affects plant ecophysiological processes, the dynamics of soil carbon and the overall exchange of mass and energy between the land and the atmosphere. This paper focuses on some of the important, yet preliminary, results on C and energy fluxes that have been obtained at the large scale troughfall manipulation experiment (Tolfa, Italy), in a forest dominated by Arbutus unedo L
    • …
    corecore